Aim:- To understand the basic atomic structure (Bohr Atom model), Sub atomic particles like Proton, Electron, Neutron and their Electrical properties.

Theory:-

In 1913 Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus. The motion of the electrons in the Rutherford model was unstable because, according to classical mechanics and electromagnetic theory, any charged particle moving on a curved path emits electromagnetic radiation; thus, the electrons would lose energy and spiral into the nucleus. To remedy the stability problem, Bohr modified the Rutherford model by requiring that the electrons move in orbits of fixed size and energy. The energy of an electron depends on the size of the orbit and is lower for smaller orbits. Radiation can occur only when the electron jumps from one orbit to another. The atom will be completely stable in the state with the smallest orbit, since there is no orbit of lower energy into which the electron can jump.

 

classical_atomic_orbit.gif

  1. Nucleus:- The part of atom which contains proton and neutron. This part is the place where total mass is concentrated.

 

Blausen_0342_ElectronEnergyLevels.png

2. Protons:- These are positively charged particles which are confined inside the Nucleus.

3. Neutrons:- These particles are neutral in charge but having a mass equal to the protons and are situated inside Nucleus.

4. Electrons:- These particles are having equal but opposite charge of protons. The number of electrons must be equal to the number of protons so that the atoms becomes neutral in terms of electrical charge.

5. Orbits:- The path through which the electrons revolve round the nucleus are known as orbits. The orbits can accommodate the electrons in the order of 2, 8, 18,32 etc.

Basic Components

Resistors

As the name implies, resistors add resistance to the circuit and reduces the flow of electrical current. It is represented in a circuit diagram as a pointy squiggle with a value next to it.

The different markings on the resistor represent different values of resistance. These values are measured in ohms.
Resistors also come with different wattage ratings. For most low-voltage DC circuits, 1/4 watt resistors should be suitable.
You read the values from left to right towards the (typically) gold band. The first two colors represent the resistor value, the third represents the multiplier, and the fourth (the gold band) represents the tolerance or precision of the component. You can tell the value of each color by looking at a resistor color value chart.

Or… to make your life easier, you could simply look up the values using a graphical resistance calculator.

Anyhow… a resistor with the markings brown, black, orange, gold will translate as follows:
reistors
1 (brown) 0 (black) x 1,000 = 10,000 with a tolerance of +/- 5%

Any resistor of over 1000 ohms is typically shorted using the letter K. For instance, 1,000 would be 1K; 3,900, would translate to 3.9K; and 470,000 ohms would become 470K.

Values of ohms over a million are represented using the letter M. In this case, 1,000,000 ohms would become 1M.

Capacitors

A capacitor is a component that stores electricity and then discharges it into the circuit when there is a drop in electricity. You can think of it as a water storage tank that releases water when there is a drought to ensure a steady stream.

 

capacitor

Capacitors are measured in Farads. The values that you will typically encounter in most capacitors are measured in picofarad (pF), nanofarad (nF), and microfarad (uF). These are often used interchangeably and it helps to have a conversion chart at hand.

The most commonly encountered types of capacitors are ceramic disc capacitors that look like tiny M&Ms with two wires sticking out of them and electrolytic capacitors that look more like small cylindrical tubes with two wires coming out the bottom (or sometimes each end).

Capacitor (1)

Ceramic disc capacitors are non-polarized, meaning that electricity can pass through them no matter how they are inserted in the circuit. They are typically marked with a number code which needs to be decoded. Instructions for reading ceramic capacitors can be found here. This type of capacitor is typically represented in a schematic as two parallel lines.

Electrolytic capacitors are typically polarized. This means that one leg needs to be connected to the ground side of the circuit and the other leg must be connected to power. If it is connected backwards, it won’t work correctly. Electrolytic capacitors have the value written on them, typically represented in uF. They also mark the leg which connects to ground with a minus symbol (-). This capacitor is represented in a schematic as a side-by-side straight and curved line. The straight line represents the end which connects to power and the curve connected to ground.

Diodes

Diodes are components which are polarized. They only allow electrical current to pass through them in one direction. This is useful in that it can be placed in a circuit to prevent electricity from flowing in the wrong direction.

 

Diode-Symbol.jpg

Another thing to keep in mind is that it requires energy to pass through a diode and this results in a drop of voltage. This is typically a loss of about 0.7V. This is important to keep in mind for later when we talk about a special form of diodes called LEDs.

The ring found on one end of the diode indicates the side of the diode which connects to ground. This is the cathode. It then follows that the other side connects to power. This side is the anode.

The part number of the diode is typically written on it, and you can find out its various electrical properties by looking up its datasheet.

They are represented in schematic as a line with a triangle pointing at it. The line is that side which connected to ground and the bottom of the triangle connects to power.

Transistors

A transistor takes in a small electrical current at its base pin and amplifies it such that a much larger current can pass between its collector and emitter pins. The amount of current that passes between these two pins is proportional to the voltage being applied at the base pin.

There are two basic types of transistors, which are NPN and PNP. These transistors have opposite polarity between collector and emitter. For a very comprehensive intro to transistors check out this page.

transistors                    npn

 

bc107

NPN transistors allow electricity to pass from the collector pin to the emitter pin. They are represented in a schematic with a line for a base, a diagonal line connecting to the base, and a diagonal arrow pointing away from the base.
PNP transistors allow electricity to pass from the emitter pin to the collector pin. They are represented in a schematic with a line for a base, a diagonal line connecting to the base, and a diagonal arrow pointing towards the base.
Transistors have their part number printed on them and you can look up their datasheets online to learn about their pin layouts and their specific properties. Be sure to take note of the transistor’s voltage and current rating as well.

Integrated Circuits

An integrated circuit is an entire specialized circuit that has been miniaturized and fit onto one small chip with each leg of the chip connecting to a point within the circuit. These miniaturized circuits typically consist of components such as transistors, resistors, and diodes.
For instance, the internal schematic for a 555 timer chip has over 40 components in it.
Like transistors, you can learn all about integrated circuits by looking up their datasheets. On the datasheet you will learn the functionality of each pin. It should also state the voltage and current ratings of both the chip itself and each individual pin.  Integrated circuits come in a variety of different shapes and sizes. As a beginner, you will be mainly working with DIP chips. These have pins for through-hole mounting. As you get more advanced, you may consider SMT chips which are surface mount soldered to one side of a circuit board.

ic 555 photo      ic 555

The round notch on one edge of the IC chip indicates the top of the chip. The pin to the top left of the chip is considered pin 1. From pin 1, you read sequentially down the side until you reach the bottom (i.e. pin 1, pin 2, pin 3..). Once at the bottom, you move across to the opposite side of the chip and then start reading the numbers up until you reach the top again.

Keep in mind that some smaller chips have a small dot next to pin 1 instead of a notch at the top of the chip.

There is no standard way that all ICs are incorporated into circuit diagrams, but they are often represented as boxes with numbers in them (the numbers representing the pin number).

 

Potentiometers

Potentiometers are variable resistors. In plain English, they have some sort of knob or slider that you turn or push to change resistance in a circuit. If you have ever used a volume knob on a stereo or a sliding light dimmer, then you have used a potentiometer.

Potentiometers are measured in ohms like resistors, but rather than having color bands, they have their value rating written directly on them (i.e. “1M”). They are also marked with an “A” or a “B, ” which indicated the type of response curve it has.

Potentiometers marked with a “B” have a linear response curve. This means that as you turn the knob, the resistance increases evenly (10, 20, 30, 40, 50, etc.). The potentiometers marked with an “A” have a logarithmic response curve. This means that as you turn the knob, the numbers increase logarithmically (1, 10, 100, 10,000 etc.)

Potentiometers have three legs as to create a voltage divider, which is basically two resistors in series. When two resistors are put in series, the point between them is a voltage that is a value somewhere between the source value and ground.

For instance, if you have two 10K resistors in series between power (5V) and ground (0V), the point where these two resistors meet will be half the power supply (2.5V) because both of the resistors have identical values. Assuming this middle point is actually the center pin of a potentiometer, as you turn the knob, the voltage on the middle pin will actually increase towards 5V or decrease toward 0V (depending which direction that you turn it). This is useful for adjusting the intensity of an electrical signal within a circuit (hence its use as a volume knob).

This is represented in a circuit as a resistor with an arrow pointing towards the middle of it.

If you only connect one of the outer pins and the center pin to the circuit, you are only changing the resistance within the circuit and not the voltage level on the middle pin. This too is a useful tool for circuit building because often you just want to change the resistance at a particular point and not create an adjustable voltage divider.

This configuration is often represented in a circuit as a resistor with an arrow coming out of one side and looping back in to point towards the middle.

LEDs

LED stands for light emitting diode. It is basically a special type of diode that lights up when electricity passes through it. Like all diodes, the LED is polarized and electricity is only intended to pass through in one direction.

There are typically two indicators to let you know what direction electricity will pass through and LED. The first indicator that the LED will have a longer positive lead (anode) and a shorter ground lead (cathode). The other indicator is a flat notch on the side of the LED to indicate the positive (anode) lead. Keep in mind that not all LEDs have this indication notch (or that it is sometimes wrong).

Like all diodes, LEDs create a voltage drop in the circuit, but typically do not add much resistance. In order to prevent the circuit from shorting, you need to add a resistor in series. To figure out how large of a resistor you need for optimum intensity, you can use this online LED calculator to figure out how much resistance is needed for a single LED. It is often good practice to use a resistor that is slightly larger in the value than what is returned by calculator.

You may be tempted to wire LEDs in series, but keep in mind that each consecutive LED will result in a voltage drop until finally there is not enough power left to keep them lit. As such, it is ideal to light up multiple LEDs by wiring them in parallel. However, you need to make certain that all of the LEDs have the same power rating before you do this (different colors often are rated differently).

LEDs will show up in a schematic as a diode symbol with lightning bolts coming off of it, to indicate that it is a glowing diode.